Exercise 31

Explain, using Theorems 4,5,7, and 9, why the function is continuous at every number in its domain. State the domain.

$$
M(x)=\sqrt{1+\frac{1}{x}}
$$

Solution

Both 1 and $\frac{1}{x}$ are continuous functions at all numbers in their respective domains by Theorem 7, and their sum $1+\frac{1}{x}$ is also a continuous function for $x \neq 0$ by Theorem $4 . M(x)$ is a composition of the square root function and this sum, so by Theorem 9 this is also a continuous function at all numbers in its domain. Find the domain of $M(x)$ by requiring what's under the square root to be a nonnegative number.

$$
\begin{aligned}
& 1+\frac{1}{x} \geq 0 \\
& \frac{x+1}{x} \geq 0
\end{aligned}
$$

The critical points are $x=-1$ and $x=0$. Partition the number line at these points, and test whether the inequality is true or false in each interval.

As a result,

$$
x \leq-1 \quad \text { or } \quad x \geq 0 \text {. }
$$

Combining these two conditions with $x \neq 0$, the domain of $M(x)$ is

$$
(-\infty,-1] \cup(0, \infty)
$$

